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Phaser
! You will learn 

– What type of problems Phaser aims to solve 
– How it differs from other synchronizers 
– What is "special" about Phaser 

! This tutorial assumes a good working knowledge of threading 
– To learn more, be sure to get our Mastering Threads Course 

• learning.javaspecialists.eu 
– Also join our free The Java Specialists' Newsletter 

• javaspecialists.eu/archive
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CountDownLatch
! Blocks until count reaches zero 

– Once it reaches zero, it remains open forever 

! For example, wait until 
– All resources have been initialized 
– All services have been started 
– All horses are at the gate
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Code Sample: CountDownLatch
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Service getService() throws InterruptedException { 
  serviceCountDown.await(); 
  return service; 
}

void startDb() { 
  db = new Database(); 
  db.start(); 
  serviceCountDown.countDown(); 
}

void startMailServer() { 
  mail = new MailServer(); 
  mail.start(); 
  serviceCountDown.countDown(); 
}
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Interface: CountDownLatch
public class CountDownLatch { 
 CountDownLatch(int count) 

  
  
  void await() throws InterruptedException 
  boolean await(long timeout, TimeUnit unit) 
                          throws InterruptedException 

  void countDown() 
}
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Fixed number of 
initial "permits"

A thread can wait for count to reach zero

We can count down, but never up.  No reset possible.
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Animation
! by Victor Grazi 

– www.jconcurrent.com 

! Threads wait until 
latch is 0
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CyclicBarrier
! Similar to CountDownLatch 

– Threads block until all have reached the same point 
– But then it is reset to the initial value 

! CyclicBarrier allows a fixed number of parties to rendezvous 
repeatedly at a barrier point 

! Constructor takes an optional "barrier action" Runnable 
– The Runnable is executed when the barrier is successfully passed but before 

the blocked threads are released.
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Interface: CyclicBarrier
public class CyclicBarrier { 
  CyclicBarrier(int parties) 
  CyclicBarrier(int parties, Runnable barrierAction)         
  

  int await() throws InterruptedException, 
                     BrokenBarrierException 
  int await(long timeout, TimeUnit unit) 
              throws InterruptedException, 
                     BrokenBarrierException, 
                     TimeoutException  

  void reset() 
}
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Fixed number of 
parties meet 
regularly 

await() waits for all of the threads to arrive

If one of the parties times out, the 
barrier is broken and must be reset
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Animation
! by Victor Grazi 

– www.jconcurrent.com 

! Broken barriers 
need to be reset
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Phaser
! Mix of CyclicBarrier and CountDownLatch 

– Number of parties registered may vary over time 
• Like count in CountDownLatch and parties in CyclicBarrier 

– More modern approach to InterruptedException 

! Compatible with Fork/Join framework 
– Use ManagedBlocker
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Interface: Phaser Registration
public class Phaser { 
  Phaser(Phaser parent, int parties)  
   

  int register()  
   
  int bulkRegister(int parties)  
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Parameters are optionalPhasers can be 
arranged in tree to 
reduce contention 

We can change the 
parties dynamically 
by calling register()
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Interface: Phaser Signal/Wait
public class Phaser { 

  int arrive()  
  int arriveAndDeregister()  

   

  int awaitAdvance(int phase)  
   
  int awaitAdvanceInterruptibly(int phase[, timeout]) 
    throws InterruptedException 

  int arriveAndAwaitAdvance() 
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Signal only

Wait only - default 
is to save interrupt

Signal and wait - 
also saves interrupt
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Interface: Phaser Action
public class Phaser { 
  protected boolean onAdvance( 
    int phase, int registeredParties)  

}
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Override onAdvance() to 
let phaser finish early

Bunch of lifecycle 
methods left out
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Animation
! by Victor Grazi 

– www.jconcurrent.com
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Demo: Coordinated Start of Tasks
! Several tasks should start their work together 

– Or as close as possible, subject to OS scheduling 
– Need at least 4 physical cores 
– We will use the Epsilon GC 

! We will code different approaches 
– None 
– wait/notify and Lock/Condition/await/signal 
– Volatile and acquire/release spin 
– CountDownLatch and CyclicBarrier 
– Phaser
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Counting Phases
! Phaser keeps score of phase we are in 

– CyclicBarrier does not 

! We can use this to cancel the Phaser
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private void addButtons(int buttons, int blinks) { 
  Phaser phaser = new Phaser(buttons) { 
    protected boolean onAdvance( 
        int phase, int registeredParties) { 
      return phase >= blinks - 1 ||  
             registeredParties == 0; 
    } 
  }; 

  // ...
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Random Colors on Buttons
! We change color until Phaser is terminated
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new Thread() { 
  public void run() { 
    Random rand = ThreadLocalRandom.current(); 
    try { 
      do { 
        Color newColor = new Color(rand.nextInt()); 
        changeColor(comp, newColor); // sets it with the EDT 
        Thread.sleep(rand.nextInt(500, 3000)); 
        changeColor(comp, defaultColor); 
        Toolkit.getDefaultToolkit().beep(); 
        Thread.sleep(2000); 
        phaser.arriveAndAwaitAdvance(); 
      } while (!phaser.isTerminated()); 
    } catch (InterruptedException e) { return; } 
  } 
}.start();
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20 Buttons and 3 Phases
! All phases start at the same time 

– And end when the color is reset to original 
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Tiered Phasers
! Tree of phasers can reduce contention 

! A bit complicated to understand (at least for me) 
– Parent does not know what children it has 
– When a child is added, parent # parties increases by 1 

• If child's registered parties > 0 
– Once child arrived parties == 0, one party automatically arrives at parent 
– With arriveAndAwaitAdvance(), we wait for all parties in tree 

• Thus the parties in the current phaser and in the parent have to arrive
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Tiered Phasers
! Parent parties incremented when child has parties 

! outputs
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Phaser root = new Phaser(3); 
Phaser c1 = new Phaser(root, 4); 
Phaser c2 = new Phaser(root, 5); 
Phaser c3 = new Phaser(c2, 0); 
System.out.println(c3); 
System.out.println(c2); 
System.out.println(c1); 
System.out.println(root);

j.u.c.Phaser[phase = 0 parties = 0 arrived = 0]  (c3) 
j.u.c.Phaser[phase = 0 parties = 5 arrived = 0]  (c2) 
j.u.c.Phaser[phase = 0 parties = 4 arrived = 0]  (c1) 
j.u.c.Phaser[phase = 0 parties = 5 arrived = 0]  (root)
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Phaser "root" is Created With 3 Parties
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root
parties = 3
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Phaser "c1" is Created With 4 Parties
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root
parties = 4

c1
parties = 4

Increases parties 
in "root" phaser
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Phaser "c2" is created with 3 parties
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root
parties = 5

c1
parties = 4

c2
parties = 3

Again increases parties 
in "root" phaser
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root
parties = 5

c1
parties = 4

c2
parties = 3

c3
parties = 0

Phaser "c3" is created with 0 parties
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Does not increase 
parties in "c2" 

phaser, because 
c3's parties == 0



Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

ManagedBlocker
! [JavaDoc] Phasers may also be used by tasks executing in a 

ForkJoinPool which will ensure sufficient parallelism to execute 
tasks when others are blocked waiting for a phase to advance. 

! Fork/Join Pools do not typically have an upper limit on threads 
– The pool will try have active threads equal to desired parallelism level 

• Additional threads might be created temporarily
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public class ForkJoinPhaser { 
  public static void main(String[] args) { 
    ForkJoinPool fjp = new ForkJoinPool(); 
    fjp.invoke(new PhasedAction(100, new Phaser(100))); 
    System.out.println(fjp); 
  } 
  private static class PhasedAction extends RecursiveAction { 
    private final int phases; 
    private final Phaser ph; 
    private PhasedAction(int phases, Phaser ph) { 
      this.phases = phases;  
      this.ph = ph; 
    } 
    protected void compute() { 
      if (phases == 1) { 
        System.out.printf("wait: %s%n", Thread.currentThread()); 
        ph.arriveAndAwaitAdvance(); 
        System.out.printf("done: %s%n", Thread.currentThread()); 
      } else { 
        int left = phases / 2; 
        int right = phases - left; 
        invokeAll(new PhasedAction(left, ph),  
                  new PhasedAction(right, ph)); 
      } 
    } 
  } 
}
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Additional Threads Maintain Parallelism
done: Thread[ForkJoinPool-1-worker-227,5,main] 
done: Thread[ForkJoinPool-1-worker-239,5,main] 
done: Thread[ForkJoinPool-1-worker-197,5,main] 
done: Thread[ForkJoinPool-1-worker-209,5,main] 
done: Thread[ForkJoinPool-1-worker-253,5,main] 
done: Thread[ForkJoinPool-1-worker-139,5,main] 
done: Thread[ForkJoinPool-1-worker-167,5,main] 
done: Thread[ForkJoinPool-1-worker-179,5,main] 
done: Thread[ForkJoinPool-1-worker-207,5,main] 
ForkJoinPool[ 
  Running,  
  parallelism = 12,  
  size = 100,  
  active = 0, running = 0, steals = 100,  
  tasks = 0, submissions = 0] 

27



Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Synchronizers Summary
! CountDownLatch 

– Threads wait for latch to count down to zero 

! CyclicBarrier 
– Threads rendezvous at a barrier 

! Phaser 
– Flexible synchronizer for task coordination
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Further Resources
! The Java Specialists' Newsletter 

– Essential reading for anyone serious about Java 
– www.javaspecialists.eu 

! Online Bootcamp for Java Specialists 
– 150+ hours of Java lessons 
– learning.javaspecialists.eu 

! Concurrency Interest Mailing List 
– g.oswego.edu/dl/concurrency-interest 

! Email: heinz@javaspecialists.eu 

! Twitter: @heinzkabutz
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