Thread Safety with Phaser 1

-~ Thread Safety with Phaser

/DrHeinz M. Kabutz
heinz@javaspecialists.eu

@) Javaspeciglists.eu

N

Thread Safety with Phaser

Phaser

® You will learn

— What type of problems Phaser aims to solve
— How it differs from other synchronizers
— What is "special™ about Phaser

® This tutorial assumes a good working knowledge of threading

— To learn more, be sure to get our Mastering Threads Course
* learning.javaspecialists.eu

Javaspecialists.eu

— Also join our free The Java Specialists' Newsletter
e javaspecialists.eu/archive

paAlasay sIybiy |1V ‘Zynqey zuidH 6102 ©

. Javaspecialists.eu

l\‘

W

Thread Safety with Phaser

CountDownLatch

® Blocks until count reaches zero

— Once It reaches zero, it remains open forever

® For example, wait until

— All resources have been initialized
— All services have been started

— All horses are at the gate

paAlasay sIybiy |1V ‘Zynqey zuidH 6102 ©

"

Thread Safety with Phaser

Code Sample: CountDownLatch

Service getService() throws InterruptedException {
serviceCountDown.await();
return service;

}

void startDb() {
db = new Database();
db.start():
serviceCountDown.countDown():

}

Javaspecialists.eu

void startMailServer() {
mail = new MailServer():
mail.start():
serviceCountDown.countDown():

}

paAlasay sIybiy |1V ‘Zynqey zuidH 6102 ©

O

Thread Safety with Phaser

Interface: CountDownLatch o

Q

public class CountDownLatch { ©
CountDownLatch(int count) =

- * 2
QO N
2 &
wI O
— =
S —_— N
2 (A fhiread can wait for coumnt to reach zero | >
"3 void await() throws InterruptedException g
"8 boolean await(long timeout, TimeUnit unit) =
S throws InterruptedException s
s

] 8
®

>

®

Q.

void countDown() We can count down, but never up. No reset possible. |

\ i

o))

Thread Safety with Phaser

await() | = await(timeout) | | countDown() |

Animation
® by Victor Grazi

Countis 4

— www.jconcurrent.com CountDownlLatch

® Threads wait until
latch is 0

Javaspecialists.eu
paAlasay sIybiy |1V ‘Zynqey zuidH 6102 ©

Javaspecialists.eu

~N

Thread Safety with Phaser

CyclicBarrier

® Similar to CountDownLatch

— Threads block until all have reached the same point

— But then 1t i1s reset to the initial value

® CyclicBarrier allows a fixed number of parties to rendezvous
repeatedly at a barrier point

® Constructor takes an optional "barrier action” Runnable

— The Runnable is executed when the barrier is successfully passed but before
the blocked threads are released.

paAlasay sIybiy |1V ‘Zynqey zuidH 6102 ©

oo

Thread Safety with Phaser

Interface: CyclicBarrier

public class CyclicBarrier {
CyclicBarrier(int parties)
CyclicBarrier(int parties, Runnable barrierAction)

await() waits for all of the threads to arrive |

int await() throws InterruptedException,
BrokenBarrierException
int await(long timeout, TimeUnit unit)
throws InterruptedException,
BrokenBarrierException,
TimeoutException

Javaspecialists.eu
pansasay sybiy |1y ‘Zingey zuidH 6102 ©

void reset() | If one qf the parties times out, the 1‘
1 | barrier 1s broken and must be reset |

O

Thread Safety with Phaser

AnimatiOn await() | | await(timeout) | | barrier.reset() |
® by Victor Grazi

_ Parties outstanding 4 N
— www.jconcurrent.com CyclicBarrier

® Broken barriers
heed to be reset

Javaspecialists.eu
paAlasay sIybiy |1V ‘Zynqey zuidH 6102 ©

-\
=

Thread Safety with Phaser

Phaser

® Mix of CyclicBarrier and CountDownLatch

— Number of parties registered may vary over time
e Like countin CountDownLatch and parties in CyclicBarrier

— More modern approach to InterruptedException

® Compatible with Fork/Join framework

— Use ManagedBlocker

Javaspecialists.eu
pansasay sybiy |1y ‘Zingey zuidH 6102 ©

)\
—-)

Thread Safety with Phaser

Interface: Phaser Registration

public class Phaser {
Phaser(Phaser parent int partles)

Phasers can be

*t Parameters are optlonal |

int register()

int bulkRegister(int parties)

. Javaspecialists.eu
paAlasay sIybiy |V ‘Zinqey zuidH 6L0Z @

-
N

Thread Safety with Phaser

Interface: Phaser Signal/\Wait

public class Phaser {

int arrive()
int arriveAndDeregister()

V
|
|
1

| ———— =

' Signal

[e— ——y

Wait only - default |
is to save interrupt |

int awaitAdvance(int phase)

int awaitAdvanceInterruptibly(int phase[, timeout])
throws InterruptedException

. Javaspecialists.eu

l\‘

' Signal and wait - {
| also saves interrupt |

paAlasay sIybiy |1V ‘Zynqey zuidH 6102 ©

»
|

int arriveAndAwaitAdvance()

1

-
W

Thread Safety with Phaser

Interface: Phaser Action

public class Phaser {
protected boolean onAdvance(
int phase, int registeredParties)

| OvemdeonAdvace()to
let phaser ﬁmsh early

Javaspecialists.eu
paAlasay sIybiy |1V ‘Zynqey zuidH 6102 ©

| ~methods left out |

-\
N

Thread Safety with Phaser

g o - register() | | awaitAdvance() | | arrive() |
Animation S . .
arriveAndAwaitAdvance() | | arriveAndDeregister() |
® by Victor Grazi
_ Phase: 0 Registered: 4 Arrived: 0 Unarrived: 4
— www.jconcurrent.com X

Phaser

Javaspecialists.eu
pansasay sybiy |1y ‘Zingey zuidH 6102 ©

-\
O

Thread Safety with Phaser

Demo: Coordinated Start of Tasks

® Several tasks should start their work together

— Or as close as possible, subject to OS scheduling

— Need at least 4 physical cores
— We will use the Epsilon GC

® We will code different approaches

— None

Javaspecialists.eu

— wait/notify and Lock/Condition/await/signal
— Volatile and acquire/release spin

— CountDownLatch and CyclicBarrier

paAlasay sIybiy |1V ‘Zynqey zuidH 6102 ©

— Phaser

Javaspecialists.eu

l\‘

-
@)

Thread Safety with Phaser

Counting Phases

® Phaser keeps score of phase we are In

— CyclicBarrier does not

® We can use this to cancel the Phaser

private void addButtons(int buttons, int blinks) {
Phaser phaser = new Phaser(buttons) {
protected boolean onAdvance(
int phase, int registeredParties) {
return phase >= blinks - 1 ||
registeredParties == 0;

paAlasay sIybiy |1V ‘Zynqey zuidH 6102 ©

[/ «s.

-\
~N

Thread Safety with Phaser

Random Colors on Buttons N
(=
—
® We change color until Phaser is terminated -
®
5 new Thread() =
) public void run() { N
»n Random rand = ThreadLocalRandom.current(); 5
P
» try { o
. do { 3
O Color newColor = new Color(rand.nextInt()); N
O changeColor(comp, newColor); // sets it with the EDT >
a Thread.sleep(rand.nextInt (500, 3000)); —
» changeColor(comp, defaultColor); 2
O Toolkit.getDefaultToolkit().beep(); ‘8—
5 Thread.sleep(2000) 1
- phaser.arriveAndAwaitAdvance(); o
. } while (['phaser.isTerminated())]; -
o } catch (InterruptedException e) { return; } 5
}
F.start(); g.

-\
Qo

Thread Safety with Phaser

20 Buttons and 3 Phases

® All phases start at the same time

— And end when the color is reset to original

SN O
Button O

Button 1 Button 2 Button 3

Button 4 Button 6 Button 7/

paAlasay sIybiy |1V ‘Zynqey zuidH 6102 ©

Button 8 Button 9 Button 10 Button 11

’

Button 15

Javaspecialists.eu

Button 12 Button 13 Button 14

Button 19

Button 16 Button 17 Button 18

f

Javaspecialists.eu

~\
©

Thread Safety with Phaser

Tiered Phasers

® Tree of phasers can reduce contention

® A bit complicated to understand (at least for me)

— Parent does not know what children it has

— When a child is added, parent # parties increases by 1
e If child's registered parties > 0

— Once child arrived parties == 0, one party automatically arrives at parent

— With arriveAndAwaitAdvance(), we wait for all parties In tree
* Thus the parties in the current phaser and in the parent have to arrive

paAlasay sIybiy |1V ‘Zynqey zuidH 6102 ©

N
O

Thread Safety with Phaser

Tiered Phasers N
(=
—
® Parent parties incremented when child has parties ‘::
®
- Phaser root = new Phaser(3); =1
() Phaser cl = new Phaser(root, 4); N
» Phaser c2 = new Phaser(root, 5); Qx,
7 Phaser c¢3 = new Phaser(c2, 0); o
% System.out.println(c3); -
= System.out.println(c2); N
2 System.out.println(cl); >
o System.out.println(root); 5
- g
> -
o n
a1 ® outputs s
N o
u.c.Phaser[phase = @ parties = @ arrived = @] (c3) .
u.c.Phaser[phase = @ parties = 5 arrived = 0] (c2) ®
u.c.Phaser[phase = @ parties = 4 arrived = 0] (c1) o
u.c.Phaser[phase = @0 parties = 5 arrived = 0] (root)

- Javaspecialists.eu

N
-

Thread Safety with Phaser

Phaser "root" is Created With 3 Parties

paAsasay sIYbIY ||V ‘ZInge)| zulaH 6102 @

Javaspecialists.eu

N
N

Thread Safety with Phaser

Phaser "c1" Is Created With 4 Parties

-

paAlasay sIybiy |1V ‘Zynqey zuidH 6102 ©

N
W

Thread Safety with Phaser

Phaser "c2" Is created with 3 parties

l Agam INCreases partles (
m root" phaser

|
| .

Javaspecialists.eu
pansasay sybiy |1y ‘zynqey] zuieH 6102 @

N
N

Thread Safety with Phaser

Phaser "c3" Is created with O parties

parties in "c2" |
phaser, because |

I
"

| ¢3's parties == 0 |

Javaspecialists.eu

paAsasay sIYbIY ||V ‘ZInge)| zulaH 6102 @

N
O

Thread Safety with Phaser

ManagedBlocker

® [JavaDoc] Phasers may also be used by tasks executing in a
ForkJoinPool which will ensure sufficient parallelism to execute
tasks when others are blocked waiting for a phase to advance.

® Fork/Join Pools do not typically have an upper limit on threads

— The pool will try have active threads equal to desired parallelism level
 Additional threads might be created temporarily

Javaspecialists.eu
paAlasay sIybiy |1V ‘Zynqey zuidH 6102 ©

N
o

Thread Safety with Phaser

public class ForkJoinPhaser {
public static void main(String[] args) <{
ForkJoinPool fjp = new ForkJoinPool();
fjp.invoke(new PhasedAction(100, new Phaser(100)));
System.out.println(fjp);
I3

private static class PhasedAction extends RecursiveAction {

System.out.printf("wait: %s%n", Thread.currentThread());
ph.arriveAndAwaitAdvance()

System.out.printf("done: %
} else {

int left = phases / 2;

int right = phases - left;

invokeAll(new PhasedAction(left, ph),

new PhasedAction(right, ph));

s%n", Thread.currentThread());

- private final int phases;
V) private final Phaser ph;
» private PhasedAction(int phases, Phaser ph) {
> this.phases = phases;

. this.ph = ph;

S } oo

g protected void compute() {
o if (phases == 1) {

)

O

s

O

q

paAtasay sIybiy ||V ‘Zzynqe)] zuisH 61L0Z ©

N
~N

Thread Safety with Phaser

Additional Threads Maintain Parallelism

done: Thread[ForkJoinPool-1-worker-227,5,main]
done: Thread[ForkJoinPool-1-worker-239,5,main]

active = 0, running = 0, steals 100,

tasks = @, submissions = 0]

®,

N

3

O

)

- ddone: Thread[ForkJoinPool-1-worker-197,5,main]]
: done: Thread[ForkJoinPool-1-worker-209,5,main] =
~ddone: Thread[ForkJoinPool-1-worker-253,5,main] D,
—|done: Thread [ForkJoinPool-1-worker-139,5,main] E.
~ldone: Thread[ForkJoinPool-1-worker-167,5,main] >
a done: Thread|[ForkJoinPool-1-worker- 5,main] =
“y|done: Thread[ForkJoinPool-1-worker-207,5,main] é?
“SForkJoinPool][=
S Running, %
parallelismﬁi= 121 g

size = 100, o

>

®

Q.

. Javaspecialists.eu

N
(o)

Thread Safety with Phaser

Synchronizers Summary

® CountDownLatch

— Threads wait for latch to count down to zero

® CyclicBarrier

— Threads rendezvous at a barrier

® Phaser

— Flexible synchronizer for task coordination

paAlasay sIybiy |1V ‘Zynqey zuidH 6102 ©

Javaspecialists.eu

Thread Safety with Phaser

Further Resources

® The Java Specialists' Newsletter

— Essential reading for anyone serious about Java

— www. javaspecialists.eu

® Online Bootcamp for Java Specialists

— 150+ hours of Java lessons

— learning. javaspecialists.eu

® Concurrency Interest Mailing List

— g.oswego.edu/dl/concurrency-interest

® Email: heinz@javaspecialists.eu

® Twitter: @Gheinzkabutz

N
©

paAlasay sIybiy |1V ‘Zynqey zuidH 6102 ©

http://g.oswego.edu/dl/concurrency-interest

