
Thread Safety with Phaser

Thread Safety with Phaser

Dr Heinz M. Kabutz

heinz@javaspecialists.eu

1

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Phaser
! You will learn

– What type of problems Phaser aims to solve
– How it differs from other synchronizers
– What is "special" about Phaser

! This tutorial assumes a good working knowledge of threading
– To learn more, be sure to get our Mastering Threads Course

• learning.javaspecialists.eu
– Also join our free The Java Specialists' Newsletter

• javaspecialists.eu/archive

2

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

CountDownLatch
! Blocks until count reaches zero

– Once it reaches zero, it remains open forever

! For example, wait until
– All resources have been initialized
– All services have been started
– All horses are at the gate

3

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Code Sample: CountDownLatch

4

Service getService() throws InterruptedException {
 serviceCountDown.await();
 return service;
}

void startDb() {
 db = new Database();
 db.start();
 serviceCountDown.countDown();
}

void startMailServer() {
 mail = new MailServer();
 mail.start();
 serviceCountDown.countDown();
}

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Interface: CountDownLatch
public class CountDownLatch {
 CountDownLatch(int count)

 void await() throws InterruptedException
 boolean await(long timeout, TimeUnit unit)
 throws InterruptedException

 void countDown()
}

5

Fixed number of
initial "permits"

A thread can wait for count to reach zero

We can count down, but never up. No reset possible.

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Animation
! by Victor Grazi

– www.jconcurrent.com

! Threads wait until
latch is 0

6

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

CyclicBarrier
! Similar to CountDownLatch

– Threads block until all have reached the same point
– But then it is reset to the initial value

! CyclicBarrier allows a fixed number of parties to rendezvous
repeatedly at a barrier point

! Constructor takes an optional "barrier action" Runnable
– The Runnable is executed when the barrier is successfully passed but before

the blocked threads are released.

7

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Interface: CyclicBarrier
public class CyclicBarrier {
 CyclicBarrier(int parties)
 CyclicBarrier(int parties, Runnable barrierAction)

 int await() throws InterruptedException,
 BrokenBarrierException
 int await(long timeout, TimeUnit unit)
 throws InterruptedException,
 BrokenBarrierException,
 TimeoutException

 void reset()
}

8

Fixed number of
parties meet
regularly

await() waits for all of the threads to arrive

If one of the parties times out, the
barrier is broken and must be reset

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Animation
! by Victor Grazi

– www.jconcurrent.com

! Broken barriers
need to be reset

9

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Phaser
! Mix of CyclicBarrier and CountDownLatch

– Number of parties registered may vary over time
• Like count in CountDownLatch and parties in CyclicBarrier

– More modern approach to InterruptedException

! Compatible with Fork/Join framework
– Use ManagedBlocker

10

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Interface: Phaser Registration
public class Phaser {
 Phaser(Phaser parent, int parties)

 int register()

 int bulkRegister(int parties)

11

Parameters are optionalPhasers can be
arranged in tree to
reduce contention

We can change the
parties dynamically
by calling register()

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Interface: Phaser Signal/Wait
public class Phaser {

 int arrive()
 int arriveAndDeregister()

 int awaitAdvance(int phase)

 int awaitAdvanceInterruptibly(int phase[, timeout])
 throws InterruptedException

 int arriveAndAwaitAdvance()

12

Signal only

Wait only - default
is to save interrupt

Signal and wait -
also saves interrupt

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Interface: Phaser Action
public class Phaser {
 protected boolean onAdvance(
 int phase, int registeredParties)

}

13

Override onAdvance() to
let phaser finish early

Bunch of lifecycle
methods left out

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Animation
! by Victor Grazi

– www.jconcurrent.com

14

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Demo: Coordinated Start of Tasks
! Several tasks should start their work together

– Or as close as possible, subject to OS scheduling
– Need at least 4 physical cores
– We will use the Epsilon GC

! We will code different approaches
– None
– wait/notify and Lock/Condition/await/signal
– Volatile and acquire/release spin
– CountDownLatch and CyclicBarrier
– Phaser

15

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Counting Phases
! Phaser keeps score of phase we are in

– CyclicBarrier does not

! We can use this to cancel the Phaser

16

private void addButtons(int buttons, int blinks) {
 Phaser phaser = new Phaser(buttons) {
 protected boolean onAdvance(
 int phase, int registeredParties) {
 return phase >= blinks - 1 ||
 registeredParties == 0;
 }
 };

 // ...

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Random Colors on Buttons
! We change color until Phaser is terminated

17

new Thread() {
 public void run() {
 Random rand = ThreadLocalRandom.current();
 try {
 do {
 Color newColor = new Color(rand.nextInt());
 changeColor(comp, newColor); // sets it with the EDT
 Thread.sleep(rand.nextInt(500, 3000));
 changeColor(comp, defaultColor);
 Toolkit.getDefaultToolkit().beep();
 Thread.sleep(2000);
 phaser.arriveAndAwaitAdvance();
 } while (!phaser.isTerminated());
 } catch (InterruptedException e) { return; }
 }
}.start();

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

20 Buttons and 3 Phases
! All phases start at the same time

– And end when the color is reset to original

18

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Tiered Phasers
! Tree of phasers can reduce contention

! A bit complicated to understand (at least for me)
– Parent does not know what children it has
– When a child is added, parent # parties increases by 1

• If child's registered parties > 0
– Once child arrived parties == 0, one party automatically arrives at parent
– With arriveAndAwaitAdvance(), we wait for all parties in tree

• Thus the parties in the current phaser and in the parent have to arrive

19

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Tiered Phasers
! Parent parties incremented when child has parties

! outputs

20

Phaser root = new Phaser(3);
Phaser c1 = new Phaser(root, 4);
Phaser c2 = new Phaser(root, 5);
Phaser c3 = new Phaser(c2, 0);
System.out.println(c3);
System.out.println(c2);
System.out.println(c1);
System.out.println(root);

j.u.c.Phaser[phase = 0 parties = 0 arrived = 0] (c3)
j.u.c.Phaser[phase = 0 parties = 5 arrived = 0] (c2)
j.u.c.Phaser[phase = 0 parties = 4 arrived = 0] (c1)
j.u.c.Phaser[phase = 0 parties = 5 arrived = 0] (root)

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Phaser "root" is Created With 3 Parties

21

root
parties = 3

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Phaser "c1" is Created With 4 Parties

22

root
parties = 4

c1
parties = 4

Increases parties
in "root" phaser

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Phaser "c2" is created with 3 parties

23

root
parties = 5

c1
parties = 4

c2
parties = 3

Again increases parties
in "root" phaser

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

root
parties = 5

c1
parties = 4

c2
parties = 3

c3
parties = 0

Phaser "c3" is created with 0 parties

24

Does not increase
parties in "c2"

phaser, because
c3's parties == 0

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

ManagedBlocker
! [JavaDoc] Phasers may also be used by tasks executing in a

ForkJoinPool which will ensure sufficient parallelism to execute
tasks when others are blocked waiting for a phase to advance.

! Fork/Join Pools do not typically have an upper limit on threads
– The pool will try have active threads equal to desired parallelism level

• Additional threads might be created temporarily

25

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

public class ForkJoinPhaser {
 public static void main(String[] args) {
 ForkJoinPool fjp = new ForkJoinPool();
 fjp.invoke(new PhasedAction(100, new Phaser(100)));
 System.out.println(fjp);
 }
 private static class PhasedAction extends RecursiveAction {
 private final int phases;
 private final Phaser ph;
 private PhasedAction(int phases, Phaser ph) {
 this.phases = phases;
 this.ph = ph;
 }
 protected void compute() {
 if (phases == 1) {
 System.out.printf("wait: %s%n", Thread.currentThread());
 ph.arriveAndAwaitAdvance();
 System.out.printf("done: %s%n", Thread.currentThread());
 } else {
 int left = phases / 2;
 int right = phases - left;
 invokeAll(new PhasedAction(left, ph),
 new PhasedAction(right, ph));
 }
 }
 }
}

26

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Additional Threads Maintain Parallelism
done: Thread[ForkJoinPool-1-worker-227,5,main]
done: Thread[ForkJoinPool-1-worker-239,5,main]
done: Thread[ForkJoinPool-1-worker-197,5,main]
done: Thread[ForkJoinPool-1-worker-209,5,main]
done: Thread[ForkJoinPool-1-worker-253,5,main]
done: Thread[ForkJoinPool-1-worker-139,5,main]
done: Thread[ForkJoinPool-1-worker-167,5,main]
done: Thread[ForkJoinPool-1-worker-179,5,main]
done: Thread[ForkJoinPool-1-worker-207,5,main]
ForkJoinPool[
 Running,
 parallelism = 12,
 size = 100,
 active = 0, running = 0, steals = 100,
 tasks = 0, submissions = 0]

27

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Synchronizers Summary
! CountDownLatch

– Threads wait for latch to count down to zero

! CyclicBarrier
– Threads rendezvous at a barrier

! Phaser
– Flexible synchronizer for task coordination

28

Thread Safety with Phaser
©

 2019 H
einz K

abutz, A
ll R

ights R
eserved

Further Resources
! The Java Specialists' Newsletter

– Essential reading for anyone serious about Java
– www.javaspecialists.eu

! Online Bootcamp for Java Specialists
– 150+ hours of Java lessons
– learning.javaspecialists.eu

! Concurrency Interest Mailing List
– g.oswego.edu/dl/concurrency-interest

! Email: heinz@javaspecialists.eu

! Twitter: @heinzkabutz

29

http://g.oswego.edu/dl/concurrency-interest

